RR and MI Rings Working Group Report

Ioanis Kourbanis/Uli Wienands Project X Collaboration Meeting September 11-12, 2009

Outline

Comparison between ICD-1 and ICD-2.

Major R&D elements.

Recent Progress.

Tentative Plan for FY10.

ICD-1 Configuration

- •100 turns injection from Linac to RR
- •Phase space painting in RR.
- •One turn injection for RR to MI (bucket to bucket)

ICD-2 Configuration

- •Bucket to bucket transfer from RCS to RR (six injections)
- •One turn injection from RR to MI.

Major R&D Elements

NO CHANGE BETWEEN ICD-1 AND ICD-2

- The current MI rf system does not have enough power to accelerate the beam. We currently have no second harmonic system in MI. Need a 53MHz rf system (including a second harmonic) for RR.
- The MI crosses transition.
- Electron cloud instabilities and mitigation.
- Beam stability and losses in both MI and RR.

Recent Progress (1) E-Cloud Measurements

- Made great progress with e-cloud microwave measurements.
 - Data from both bend and field free regions.
 - Direct phase shift results.
 - Dedicated BPMs with good quality cables installed at MI-52 bend and MI40 straight sections.
 - 3 large aperture BPMs have been installed around the 3ft long test pipes at MI-52 for direct comparison with the RFAs.
- Developed and installed in the MI new improved RFA detectors.
 - Increased surface area.
 - Better focusing.
 - Fewer grids.
 - Installed a total of 3 new RFAs and 1 old one for comparison at MI-52 section

Direct Phase Shift results

N. Eddy

New RFA detectors

Old RFA

New RFA

B. Zwaska, C.Y. Tan

Recent Progress (2) E-Cloud Mitigation

- Collaborated with BNL in coating with TiN two cylindrical 3ft beam pipes and installed one in MI.
 - An additional 10ft of cylindrical beam is going to be send for coating.
- We have developed a detailed plan with SLAC for the coating of a 20ft long elliptical beam pipe with hardware that can be used for in situ coating of the MI beam-pipe.
 - Work has started on fabricating parts.
 - Coating to start in mid October.

Project X Coating of MI beam pipes at BNL

L. Valerio

MI E-CLOUD TEST SET-UP AT MI-52

Recent progress (3) E-Cloud simulations

- Continued the e-cloud generation simulations with PONSIT.
 - Comparison with RFA data helped fix SEY.
 - Comparison of two rf frequencies.
 - Simulation results for both bend and straight sections.
 - Comparison between MI and PS2.
 - Results between bend and straight region look very different!

Project X E-Cloud Simulation Results. **Straight sections**

E-cloud simulation results for MI dipole region

M. Furman

Project X Comparison between PS2 and MI

Recent Progress (4)New MI/RF System

- Developed a cavity design that meets all the requirements for the fundamental 53MHz rf system.
- Have identified a power tube that will work for both 53 and 106
 MHz handle the currents required.
- Started work on a higher order mode damper.

New 53 MHz Cavity design and parameters

	Project X Collaboration
	21-Nov-08
	Design
Harmonic Number	588
Number of Filled Buckets	548
Frequency:	52.8114-53.104 MHz
Acceleration Ramp Slope:	240 GeV/s
Beam Intensity:	1.6e14 Protons
Beam Accelerating Power:	6.144 MW
Number of Accelerating Cavities:	18
Cavity R/Q:	25
Cavity Q:	4000
Accelerating Power per Cavity (beam):	450 kW/Cavity
Maximum cavity Accelerating Voltage:	300 kV/Cavity
Accelerating voltage required: Vsinφs	2.66 MV
Total Accelerating Voltage Available:	5.4 MV
Total Peak Amplifier Power	
Required:(beam + cavity)	

J. Dey

Project X Tentative FY10 Plan (1)

MI/RR RF

FNAL

- > Continue optimizing the cavity design.
- Design a higher order mode damper.
- Purchase one power tube and investigate mounting.
- Make a cavity mock up for low power tests.

- SLAC

➤ Model the cavity design using the Omega3P parallel EM code.

- ANL?

Work on modeling and mechanical design of the cavity tuner.

Simulation model of the MI Cavity with Omega3P code.

Red: Ferrite

Green: Ceramic window

Yellow: Copper coated wall

& Vacuum

L. Xiao

F = 53.701MHz

 $R/Q = 58.69 \Omega (\beta=1)$

 $Q0 = 9630 \ (\sigma=5.8e7 \ s/m)$

E field

B field

Project X Tentative FY10 Plan (2)

E-Cloud Simulations

- LBNL
 - ➤ Continue the PONSIT simulations and comparisons with beam data.
 - > Start beam dynamics simulations
- SLAC
 - ➤ Compare PONSIT results with CLOUDLAND?
- E-cloud Measurements
 - Compare the microwave results with the RFA for both coated and uncoated beam pipes.
 - Try and measure tune shifts of a target bunch.
- E-Cloud Mitigation

Develop hardware for in-situ TiN coating in MI.

- Set-up for beam-pipe coatings in Fermilab.
- Follow the developments in alternative coatings (Participate in the CERN workshop on coatings)

Project X Tentative FY10 Plan (3)

- Start space charge simulations for MI using Synergia at Fermilab (E. Stern, J. Amundson) and Impact at LBNL (J. Qiang, R.Ryne).
 Both 3-d codes can include apertures for different elements and high order multi-poles for magnets.
 - Work on benchmarking the two codes.
 - Experimental validation of simulation results.
 - Apply simulation predictions to evaluate how much space charge tune shift we can tolerate, and what are the losses as a function of the bunching factor.
- Start a program of space charge studies in MI.
 - We can easily generate single bunches with intensities of 3E11!